TFAWS Passive Thermal Paper Session

Cryogenic Multi-layered Insulation Seam Studies and Experiments

Justin P. Elchert
Wesley L. Johnson
NASA Glenn Research Center

Presented by Justin P. Elchert

Thermal & Fluids Analysis Workshop TFAWS 2017 August 21-25, 2017 NASA Marshall Space Flight Center Huntsville, AL

- Introduction
- Calorimeter overview
- Calorimeter photos
- Test results
- Thermal model discussion

Lockheed Concept - 1969

Calorimeter Overview

Vacuum tank

Copper auxiliary wall

Test section

Calorimeter Cross-Section

Calorimeter

Copper

Black paint AZ-306

Water/glycol cooled jacket

Calorimeter

G-10 support

insulation

Seam configuration

Desire to model staggered over lap and butt seams

Typical Solution for MLI Heat Load

- There are multiple 1-D MLI solution methods
 - Direct (a.k.a. "Layer by Layer")
 - Semi-Empirical ("Lockheed", "Modified Lockheed", "Cunnington")
 - Polynomial fits
- These solutions assume blankets are "ideal" and from laboratory calorimeter data
 - Historical tank data off by factor of 2 10
- Cannot use these methods to predict heat load from a seamed blanket

Comparison to predictions and test data

.		# of	layer	0		_ /	55	IDE
Test	Configuration	layers	density	Q_{flux}	Q _{seam}	Q _{pred}	DF	dDF
			lay/cm	W/m2	W/m	W/m2		
1	Overlap	50	17.4	0.564	0.044	0.116	4.9	0.25
2	Interleave	50	17.1	0.536	0	0.116	4.6	-
3	Butt	50	18	0.576	0.061	0.115	5	0.35
4	Butt - 1 stagger, 2 in	50	19	0.577	0.062	0.116	5	0.35
5	Butt - 1 stagger, 4 in	50	17.9	0.580	0.06	0.116	5	0.38
6	Interleave	20	16.6	0.727	0	0.28	2.6	-
7	Overlap	20	16.6	0.729	0.003	0.28	2.6	0.01
8	Butt - 1 stagger, 2 in	20	18	0.861	0.204	0.28	3.1	0.48
9	Butt - 0 stagger	20	18	0.823	0.146	0.28	2.9	0.34

Q_{pred} using "Layer by Layer" method

Thermal Desktop model assumptions

- Steady state
- Water cooled jacket approximated with isothermal boundary node and conductor
- Cryocoolers approximated as isothermal boundary nodes at the test condition
- Temperature dependent properties (including emissivity)
- Diffuse radiation
- Optically thick layers

Thermal Desktop Model

aluminum 6061 rod

Cold guard

Test section

20 layer interleave

Q = 0.30 W

 $Q_{flux} = 0.216 \text{ W/m}^2$

Staggered, two inch spacing, actual gap

Q = 0.37 W $Q_{flux} = 0.27 \text{ W/m}^2$ $Q_{seam} = 0.06 \text{ W/m}$

2.3 times lower than measurement

Conclusions and Forward Work

- TD can be used to model MLI in detail, including seams, to within a factor of ten of the true answer
- When correlated / validated, the model will be used to tabulate a set of results useful for first order estimates at the system level

Acknowledgements

- This work was funded by the Space Technology Mission Directorate's Evolvable Cryogenics Technology Demonstration Mission under the Improved Fundamental Understanding of Multi-Layer Insulation task.
- Dr. David Chato, NASA GRC (ret)
- Dr. Ebiana, Cleveland State University

Questions

References

 McIntosh "Layer-by-Layer MLI Calculation Using a Separated-Mode Equation" Advances in Cryogenic Engineering, Vol. 39, Plenum Press, New York, 1994